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An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-
15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The
input parameters were strain, strain rate, and temperature whereas microstructural features namely,
%DRX and average grain size were the output parameters. The ANN was trained with the database
obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and
rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the
model was evaluated using a wide variety of statistical indices and the predictability of the model was found
to be good. The combined influence of temperature and strain on microstructural features has been
simulated employing the developed model. The results were found to be consistent with the relevant
fundamental metallurgical phenomena.
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1. Introduction

Dynamic recrystallization (DRX) takes place most readily in
low to medium stacking-fault energy materials in which
(because of slow climb and cross slip) dynamic recovery is
sluggish, so that the driving force for recrystallization is
maintained. The DRX process mainly influences the micro-
structure and mechanical properties and thus the formability of
the materials (Ref 1). DRX consists of, besides other elemen-
tary mechanisms, grain boundary migration, and the evolution
of sub-boundaries to high angle boundaries. Depending on
which of these two processes is prevalent, either grain
coarsening or grain refinement occurs (Ref 2).

In our recent study, it has been shown that Alloy D9
undergoes DRX during hot working (Ref 3). Alloy D9 is a
15Cr-15Ni-2.2Mo-0.3Ti modified austenitic stainless steel,
which has been selected as a candidate material for in-core
applications as fuel cladding tube and hexagonal subassembly
wrapper for Indian fast breeder reactors. This material has to be
processed through various hot forming techniques like rolling,
forging, and extrusion before it is fabricated into final
components. During this processing, material undergoes shape
change as well as change in microstructure that depends on the

process history. In order to ensure the mechanical properties
demanded from the rolled and forged product, a homogeneous
and completely recrystallized structure must be achieved.
Therefore, to control the microstructure in the end product, it
is required to quantitatively predict the effect of processing
parameters on microstructural evolution during these industrial
scale metal-forming processes.

In order to make an accurate computation of the micro-
structure during thermo-mechanical processing, many research-
ers have developed several models. Sellars employed an
empirical formula to study recrystallization behavior by
power-law functions of the process parameters, including
strain, strain rate, and deformation temperature (Ref 4). Ashby
applied internal state variables to describe microstructural
evolution (Ref 5). Kim and Dunne proposed a phenomenolog-
ical constitutive equation considering the change of grain size
(Ref 6). However, it has been observed that microstructural
evolution during hot working of Alloy D9 has fuzzy charac-
teristics (Ref 3). Therefore, it is too difficult to use a single
mathematical model to represent microstructural evolution
during thermo-mechanical processing of Alloy D9. Artificial
neural network (ANN), in this respect, provides an efficient
alternative. Artificial neural network provides a parameterized,
non-linear mapping between inputs and outputs. It has the
inherent capability to deal with fuzzy information, whose
functional relations are not clear. Therefore, in the present
study, an ANN model has been developed to predict the
microstructural evolution of Alloy D9 during hot forming.

2. Materials and Experimental

2.1 Materials

The Alloy D9 used in this present investigation was
supplied by M/s. MIDHANI, Hyderabad, India, in mill
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annealed condition as 30 mm diameter rods. Chemical com-
position of the alloy is given in Table 1. The cast ingots were
hot forged and hot rolled to 30 mm diameter rounds. Cold
swaging operation was performed in order to reduce the
diameter of the rod to 20 mm. The cold swaged rod was then
annealed in a vacuum furnace at 1323 K for 1 h in order to
eliminate the work hardening effect of cold working operations
as well as to get complete recrystallized structure. From this
solution annealed rod, 30 mm height and 20 mm diameter
compression specimens for forging operation were machined.
For rolling, 24 mm thick rectangular plates were machined
from the initial 30 mm hot rolled and hot forged rounds.

2.2 Thermo-Mechanical Processing

Hammer forging operations were carried out with a 250-kg
pneumatic hammer in a single blow in the temperature range
1223-1423 K in steps of 50 K. Temperature during the oper-
ation was monitored based on the data obtained from cooling
curve, which has been established for the present study. The
mean strain rate of the forge hammer is 100 s-1, which has been
measured by high-speed photography. True strains of 0.1, 0.2,
0.3, 0.4, and 0.5 were imparted at each temperature in order to
study the effect of strain. The specified amount of strain in each
sample was achieved in a single step. As soon as the operation
was completed, the deformed specimen was water quenched
within 2-3 s in order to freeze the deformed microstructure.

Hydraulic press-forging tests were performed on a 250-ton
triple-action hydraulic press. The operations were carried out in
the temperature range 1223-1373 K in steps of 50 K and
similar amount of strains were given at each temperature as
mentioned in forge hammer operation. The calculated mean
strain rate was equal to � 0.22 s-1.

The rolling operations were performed in a 2Hi/4Hi-
instrumented laboratory rolling mill (Carl Wezel Model No.
420/350/275). The mill was fitted with a 2Hi hot-roller set, the
roller being 420 mm in width and 350 mm in diameter. Tests
were carried out in the temperature range 1173-1473 K (in
steps of 100 K) at a roll speed of 16 rpm, and a true strain of
0.3 was achieved in a single step. The mean true strain rate
during rolling was estimated using the following equation:

_e ¼ m
ln

h0

h

� �
ffiffiffiffiffiffiffiffiffi
RDh
p ; ðEq 1Þ

where m is peripheral speed of the work roll = 16 rpm, R is the
undeformed roll radius = 175 mm; h0 is the thickness of the
plate before rolling = 24 mm; h is the thickness of the plate
after rolling = 18 mm; and Dh = (h0 - h). The calculated mean
strain rate was found to be � 2.6 s-1.

2.3 Characterization

The hot worked samples were cut along the longitudinal
direction and one half of the sample was taken to prepare
metallographic specimens. The microstructures were examined
optically in the maximum deformation zone of the samples and

grain sizes were measured employing linear intercept method.
Hardness measurements were carried out by Microhardness
tester [HMV-2000 SHIMADZU] using 200-g load. The mea-
surements were taken on the maximum deformation zone of the
sample. Percentage recrystallization (%DRX) at different work-
ing conditions was calculated employing the following equation:

%DRX ¼
HCWðxÞ � HHWðxÞ

HCWðxÞ � HSA
� 100; ðEq 2Þ

where HCW(x) denotes the hardness of the cold worked specimen
at a strain level of x percent, HHW(x) is the hardness of the hot
worked sample at same strain in a particular working temperature
at which we want to find out the fraction of recrystallization, and
HSA denotes the hardness of solution annealed sample. To obtain
HCW(x), cold working operation of Alloy D9 at various strain
levels were carried out by high strain rate compression testing
machine at room temperature. Since Alloy D9 virtually does
not soften by dynamic recovery (due to low to medium stacking
fault energy), the above microhardness measurements method
estimates the %DRX with sufficient accuracy and reliability.
Similar approach, as depicted in Eq 2, have been adopted by
Sakai et al. to evaluate the degree of softening in polycrystalline
nickel after hot working employing flow stress value (Ref 7). Liu
et al. have also employed similar hardness method to calculate
the fraction of recrystallization in Al alloy (Ref 8).

3. Model Overview and Learning Algorithm

Artificial neural network is a highly simplified model of the
structure of a biological network. The fundamental unit or
building block of ANN is the processing element, also called an
artificial neuron or simply a neuron. Some neurons interact with
the real world to receive input, and some provide the real world
with the output. Rest of the neurons remains hidden. Neurons
are connected to each other by synapses; associated with each
synapse is a weight factor. More details regarding ANN
modeling can be found elsewhere (Ref 9).

In this study, a multilayer perceptron (MLP) based feed-
forward ANN has been used since multilayer network has
greater representational power for dealing with highly non-
linear, strongly coupled, multivariable system (Ref 10).
Although multilayer neural network does not ensure a global
minimum solution for any given problem, it is a reasonable
approximation that if the network is trained with a compre-
hensive database, the resulting model will approximate all of
the laws of mechanics that the actual material or process obeys
(Ref 11). A general scheme of the present ANN model is given
in Fig. 1. The inputs of the model were strain (e), strain rate ð _eÞ
and temperature (T). The outputs of the model were micro-
structural features namely, %DRX and average grain size.1 A
total of 49 experimental dataset were used in the development

Table 1 Chemical composition (in wt.%) of 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (alloy D9)

C Mn Si S P Cr Ni Mo Ti B Co N

0.052 1.509 0.505 0.002 0.011 15.051 15.068 2.248 0.31 0.001 0.01 0.006

1There were two models, one for %DRX and another for average grain size.
However, in the text sometimes the word ‘‘model’’ is used to refer to the
two models collectively.
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of the model. The metal-forming processes and corresponding
data ranges are summarized in Table 2. All the data were
normalized employing the relation given by,

xN ¼
x� xmin

xmax � xmin
ðEq 3Þ

where xN is the normalized value of the parameter x; xmax and
xmin are the maximum and minimum values of x, respectively;
accordingly each parameter lies in the interval 0-1. The
normalized dataset were then randomly divided into two
groups. A total of 75% of the data were used for training and
remaining for testing. A logistic sigmoid function expressed as
Output ¼ ð1þ e�inputÞ�1 was employed as the activation
function; the learning is based on gradient descent algorithm
and hence requires the activation function to be differentiable.
The convergence criterion for the network was determined by
the average root-mean-square (RMS) error between the desired
and predicted output values,

ERMS ¼
1

N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

j¼1
ðdji � yjiÞ2

vuut ; ðEq 4Þ

where ERMS is the average RMS, N is the number of training or
testing data, p is the number of variables in the output, dj(n) and
yj(n) are the target output and network output for neuron j,
respectively. In all the calculations reported in this paper, a
convergence criterion of 1% RMS error has been set. It was,
however, found that the network invariably stabilizes before
this criterion is met.

Instead of standard back propagation (BP algorithm), the
network has been trained with some upgraded algorithms like
Resilient propagation (Rprop) and Super self-adjusting back-
propagation (superSAB). This is due to the fact that BP
algorithm uses an instantaneous estimate for the gradient of
error surface in weight space. The algorithm is therefore
stochastic in nature, i.e., it has a tendency to zigzag its way
about the true direction to a minimum on the error surface.
Indeed, BP learning is an application of a statistical method
known as stochastic approximation. Consequently, it tends to

converge slowly and hence the back propagation networks with
updated algorithms were used in the present study. A little
description of the working of resilient propagation and
superSAB algorithms is given below.

3.1 Resilient Propagation

Resilient propagation is an effective learning algorithm that
is based on direct adaptation of the weight step based on local
gradient information. It does not consider, different from
standard back propagation, the harmful influence of the
absolute value of the partial derivative for the calculation of
weight changes, but only the sign of the derivative to indicate
the direction of weight update. If the derivative is positive
(increasing error), the weight is decreased by its update value.
On the other hand, if the derivative is negative, the update value
is added. The algorithm can be mathematically expressed as
follow (Ref 12):

DwjiðnÞ ¼

� DjiðnÞ; if
@EðnÞ
@wji

> 0

þ DjiðnÞ; if
@EðnÞ
@wji

< 0

0; else

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ðEq 5Þ

wjiðnþ 1Þ ¼ wjiðnÞ þ DwjiðnÞ

DjiðnÞ ¼

gþDjiðn� 1Þ; if
@E n� 1ð Þ
@wji

� @EðnÞ
@wji

> 0

g�Djiðn� 1Þ; if
@Eðn� 1Þ
@wji

� @EðnÞ
@wji

< 0

Djiðn� 1Þ; else

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

ðEq 6Þ

where 0<g� < 1<gþ.
As can be seen from the Eq 5, the size of weight change is

solely determined by the weight specific update value Dji(n).
Each time the partial derivative of the corresponding weight wji

changes it sign, the Dji(n) is decreased by a factor g� (Eq 6),
since it is indicated that the last update was too large and the
algorithm jumped over a local minimum. On the other hand, if
the derivative retains its sign, the update value is slightly
increased by the factor gþ in order to accelerate the conver-
gence in shallow regions.

3.2 SuperSAB

The Super self-adjusting back-propagation (superSAB)
algorithm is based on the idea of sign-dependant learning rate
adaptation. The basic of the function is to change the learning
rate exponentially instead of linearly. This is done in order to

Temperature 

Strain

 Strain rate 

Artificial
Neural

Network 

%DRX

Grain size

Fig. 1 Schematic of the ANN model for modeling microstructural
evolution of Alloy D9

Table 2 Ranges of the experimental data sets employed for ANN modeling in this study

Processes Strain Strain rate (s-1) Temperature (K)

Forge hammer 0.1-0.5 (steps of 0.1) 100 1223-1423 (steps of 50 K)
Hydraulic press 0.1-0.5 (steps of 0.1) 0.22 1223-1373 (steps of 50 K)
Rolling 0.3 2.6 1173-1473 (steps of 100 K)
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take the wide range of temporarily suited learning rates into
account (Ref 13).

In case of a change in sign of two successive derivatives, the
previous weight is reversed. SuperSAB algorithm is considered
to be fast convergence algorithm. It has been shown that
superSAB converges orders of magnitude faster than the
original back propagation algorithm, and is only slightly
instable (Ref 14).

4. Results and Discussion

4.1 Microstructural Evolution

The influence of strain on %DRX at various temperature
levels during hammer forging and hydraulic press forging
operation is shown in Fig. 2(a) and (b), respectively. It could be
observed that, in general, %DRX increases with strain at a
particular temperature level. One interesting behavior could be
observed from Fig. 2(a) is that DRX was incomplete at
1423 K, though it has been found to be completed above
30% deformation level at 1373 K during forge hammer
operation. In fact in this study, only these particular combina-
tions of strain, strain rate, and temperature, DRX has been
found to be completed. This behavior has been explained on the
basis of a simple model of DRX in terms of rate of nucleation
vs. rate of grain boundary migration (Ref 3). Alloy D9 is a low
to medium staking fault energy (SFE) material. Therefore, rate

of nucleation would dominate over grain boundary migration
(Ref 15). The rate of nucleation could be expressed as,

_N ¼ ðb _e=blÞ exp½�Q=RT �; ðEq 7Þ

where b ¼ constant; _e = strain rate, b = Burgers vector,
l = dislocation segment length, Q = activation energy for
diffusion, R = gas constant, and T = temperature. Since Alloy
D9 is basically a Ti modified stainless steel, TiC precipitates
were likely to take place in the matrix during straining. These
precipitates would pin the dislocations and thereby reduced the
link length �l� (Eq 7) which eventually favored DRX. TiC
precipitates, in fact, were found to facilitate DRX in Alloy D9
with Ti/C ratio of 8 where the extent of DRX was found much
higher as compared to Alloy D9 with zero Ti at identical
processing conditions (Ref 16). However, if the processing
temperature becomes too high, dissolution of these precipitates
would happen; thereby the favorable conditions of DRX
offered by precipitates would be substantially lost. In yet
another study by the authors on the effect of annealing
temperatures in the range 1323-1573 K on engineering prop-
erties for Alloy D9, it was found that the amount of precipitates
decreased with increasing annealing temperature (Ref 17).
From the present study, it seems 1373 K was the optimum
processing temperature for Alloy D9 where the complicated
interactions between precipitates and processing parameters
(i.e., strain, strain rate, and temperature) were just sufficient to
complete the DRX process. On the other hand, 1423 K was a
higher range of temperature where dissolution of the TiC
precipitates might take place; thereby the rate of nucleation
would be lowered despite the fact that available thermal
activation energy was more as compared to 1373 K.

The microstructural evolution during forge hammer opera-
tion is shown in Fig. 3. At low temperature and low strain
(Fig. 3(a)), the microstructure consisted of big parent grains
and lamella like straight annealing twins. The dynamically
recrystallized grains were hardly found in the matrix. The
bulging of parent grain boundary and subsequent evolution of
�necklace� structure (shown by arrow) could be observed in
Fig. 3b. Bulging of grain boundaries was frequently observed
as a prelude to DRX. The evolution of necklace type
microstructure during initial stage of DRX has been reported
by several researchers in a variety of low to medium stacking
fault energy materials including austenitic stainless steels
(Ref 18, 19). At higher temperature and strain level, the
deformed grain structures have almost been disappeared and
microstructure consisted of small equiaxed recrystallized grains
(Fig. 3(c)).

As could be seen from the micrographs, grain size evolution
during DRX is complex in nature. When the extent of DRX
was negligible (Fig. 3(a)), micrograph shows a single peak
distribution of parent grains. However, at a higher extent of
DRX, a clear bimodal distribution of grains could be observed
(Fig. 3(b)). Some of these grains are equiaxed in nature while
the others are elongated parent grains. Finally, again single
peak distributions of new equiaxed dynamically recrystallized
grains were observed when the DRX process was almost
completed (Fig. 3(c)). It is, therefore, clear that grain size
distributions and aspect ratios are required in order to truly
represent the DRX grains. However, this necessitates to include
more input neurons in the neural network, which would result
in increased number of connection weights in the model. This
would require more experimental data than that was considered
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Fig. 2 Influence of strain on %DRX during (a) forge hammer,
(b) hydraulic press forging operation
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in the present study. Therefore, we have considered the average
grain size (along with the fraction of DRX) for the model with
out losing relevant information about the developed micro-
structure.

4.2 Neural Network Results

One hidden layer was found to be adequate for the present
problem. This observation reaffirms the universal approxima-
tion theorem that a single-layer of non-linear hidden units is
sufficient to approximate any continuous function. Hornik et al.
(Ref 20) have also shown that a three-layer ANN with sigmoid
transfer function can map any function of practical interest.
Neurons in the hidden layer were varied from 1 to 15. Neurons
more than 15 were not tried in order to avoid over fitting. The

performance of the model for %DRX and grain size prediction
at different hidden neuron level is shown in Fig. 4(a) and (b),
respectively. It could be observed from Fig. 4(a) that an ANN
model with 12 hidden neurons and Rprop algorithm produced
best performance for %DRX prediction. On the other hand, an
ANN model with 10 hidden neurons and superSAB algorithm
yielded best performances for grain size prediction (Fig. 4(b)).

Awide variety of standard statistical performance evaluation
measures have been employed to quantify the model perfor-
mance. Along with the RMS error, the predictability of the
network was quantified in terms of correlation coefficient (R)
and scatter index (SI). These are defined below.

R ¼

PN
i¼1
ðEi � �EÞðPi � �PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðEi � �EÞ2

PN
i¼1
ðPi � �PÞ2

s ðEq 8Þ

SI ¼ ERMS

�E
ðEq 9Þ

where E is the experimental finding and P is the predicted value
obtained from the neural network model. �E and �P are the mean
values of E and P, respectively. N is the total number of data
employed in the investigation. ERMS is the average RMS error
given by Eq 4. The salient features and the performances of the
models are depicted in Table 3. It could be suggested that both
resilient propagation and superSAB algorithm can efficiently
predict the microstructural features with reasonable accuracy

Fig. 3 Optical micrograph of alloy D9 during forge hammer
operation (a) T = 1223 K, e = 0.07, (b) T = 1273 K, e = 0.28, (c)
T = 1423 K, e = 0.46
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Fig. 4 Performances of the ANN model at various hidden neurons
level for (a) %DRX, (b) grain size prediction

676—Volume 16(6) December 2007 Journal of Materials Engineering and Performance



and reliability. However, most striking outcome of this analysis
was that the resilient propagation required less number of
iterations and therefore it showed a faster convergence (~6
times faster) as compared to superSAB.

4.2.1 %DRX Prediction. The comparison between
experimental and predicted test data for %DRX is shown in
Fig. 5. Since test data were not used for training, it essentially
verified the ability of any ANN model to associate and
generalize a true physical response, which is unknown to the
network. As can be seen, experimental findings are close to the
predicted ones. The magnitude of the error in prediction is less
than the errors that normally arises in %DRX measurements as
shown by error bar in Fig. 2. Therefore, it could be efficiently
applied for further simulation and application. It should be
reiterated here that the designed models are �statistical� models,
i.e., they are not based on any physical theories. Thereby
simulated results from the models have been explained by
relevant fundamental metallurgical phenomena.

The combined influence of strain and temperature on
%DRX is shown in Fig. 6. It could be noticed that DRX was
essentially strain dominated especially at the lower strain rate,
i.e., in hydraulic press forging operation (Fig. 6(b)). With
increased of both the strain and temperature, %DRX increased.
This behavior could be well explained from the theory of
recrystallization. It is well known fact that defects are the
nucleating sites for formation of new strain free grains during
recrystallization. With increase in strain, the amount of stored
energy and the number of defects with in the crystal lattice
increase. So the defect density with in the crystal increases that
ultimately leads to more amount of DRX. On the other hand,
the microscopic mechanisms controlling recrystallization are
thermally activated. With increase in temperature, the available
thermal activation energy for high angle grain boundary
migration increases. This eventually favors nucleation and
subsequent expansion of DRX.

A close look in Fig. 6 revealed that our ANN model never
predicted 100% DRX. However, it has been already discussed
(Section 4.1) that DRX has been completed above 30%
deformation level at 1373 K during forge hammer operation
due to complicated interactions between precipitates and
processing parameters. Therefore, it is clear that our model
could not able to track the effect of precipitates on DRX. This
could be attributed to the lack of input information or
insufficient amount of data to the network regarding the effect
of precipitation on DRX. Another important observation is
made from Fig. 6(b) is that ~80% DRX is obtained during
hydraulic press forging at the maximum temperature and strain
which is essentially much lower than that achieved during
forge hammer operation. The results have been found to be
consistent with the experiments (Fig. 2(b)). The reason could
be attributed to the lower strain rate of hydraulic press. As the
strain rate for hydraulic press is low, the time taken to
complete the specified deformation was relatively high. This
would result in a temperature drop that reduced the thermal
activation energy for nucleation and subsequent expansion of
DRX. Thereby, DRX process could not be completed even at
maximum temperatures and strains during hydraulic press
forging.

Table 3 The salient features and performances of the model for %DRX and grain size prediction in alloy D9

Output variable Learning algorithm Hidden neurons RMS test error (%) R SI Iterations

%DRX Rprop 12 4.31 0.984 0.079 400
superSAB 9 4.82 0.975 0.088 2400

Grain size Rprop 8 7.83 0.945 0.093 500
superSAB 10 7.36 0.952 0.081 2700
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Fig. 5 Accuracy of the ANN model prediction of %DRX, when
compared with experimental data
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Fig. 6 Combined influence of temperature and strain on %DRX
during (a) forge hammer, (b) hydraulic press forging operation
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4.2.2 Grain Size Prediction. The performance of the
model for grain size prediction is shown in Fig. 7. It could be
observed from Fig. 7(a) that the experimental data are much
closer to the predicted data. The correlation between experi-
ments and predicted results for same database has been shown
by regression analysis in Fig. 7(b). It could be observed that
correlation is fairly good. The deviation in correlation is about
5% and is shown by error bar. Figure 7(b) revealed that the
prediction is quite accurate for the lower grain size range,
which corresponds to complete recrystallization (single peak
distribution). A slight underestimation could be observed for
the higher grain size, which also corresponds to single peak
distribution of parent grains. However, for the grain sizes in the
range 80-100 lm, the deviation in prediction is significant. This
may be due to the bimodal distribution of grains in this range as
discussed earlier. However, this magnitude of the error in
prediction, in fact, is less than the error that normally arises
during grain size measurement. So the developed model could
be applied for grain size prediction with reasonable accuracy.

The combined influence of strain and temperature on
average grain size evolution is shown in Fig. 8. Almost similar
trend has been observed for hydraulic press forging and rolling
operation and thereby not reiterated here. It could be observed
that with increase of both the temperature and strain, grain size
decreases. This happened due to concomitant grain refinement
during DRX. It has already mentioned the DRX accelerated at
high temperature and strain. This eventually leads to lower
grain size in the product microstructure.

4.2.3 Sensitivity Analysis. Sensitivity analysis was car-
ried out to determine the relative importance of the individual
input parameter on microstructural evolution during DRX of
Alloy D9. Though various approaches have been proposed and
adopted to quantify the relative importance of input variables
(Ref 21-23), the algorithm proposed by Garson (Ref 24) and
repeated by Goh (Ref 25) is found to be the most robust in this
respect. In this present study, relative importance of the input
variables was determined employing this algorithm. The
method essentially involves partitioning the hidden-output
connection weights into components associated with each
input neuron using absolute values of connection weights. The
algorithm works based on the following principles:

(i) The absolute value of each hidden-output connections
weights wk, k = 1, 2,……, h incorporated into the input-
hidden connection weights wij to yield partitions w�ij
using the following expression:

w�ij ¼
wij

�� ��
Sj
� wkj j ðEq 10Þ

Sj ¼
Xp

i¼1
wij

�� �� ðEq 11Þ

where i = 1, 2, …, p and j = 1, 2, …, h.

0 4 8 12
0

20

40

60

80

100

120

140

160

180 Test data

)norci
m( ezis niar

G

Test example

 Experimental
 Predicted

60

60

80

100

120

140

160

180

Test data
R = 0.952)norci

m( ezis niar
G detcider

P

Experimental Grain size (micron)

 Grain size
 Linear fit

(a)

(b)

80 100 120 140 160 180

Fig. 7 Accuracy of the ANN model for grain size prediction (a)
direct comparison, (b) regression analysis

1200
1300

1400
1500

0.1
0.2

0.3
0.4

0.5

60

80

100

120

140

160

180

Temperature, KTrue Strain

norci
m,eziS

niar
G

80

100

120

140

160

Fig. 8 Combined influence of temperature and strain on grain size
during Forge hammer operation

0

10

20

30

40

50

60

Strain rate

Strain

Temperature

)
% ( ecnat rop

mI  evitale
R

Input variables

 DRX
 Grain size

Fig. 9 Relative importance of the input parameters on microstruc-
tural evolution of alloy D9 during DRX

678—Volume 16(6) December 2007 Journal of Materials Engineering and Performance



(ii) For each input neuron, the adjusted weight w�ij are sum-
med over all the hidden neurons and converted into per-
centage of the total for all input neurons. This
percentage value serves as the relative importance of
each input variable.

The relative importance of individual input parameters on
microstructural evolution of Alloy D9 is shown in Fig. 9. It
could be observed that strain is the most sensitive parameter for
DRX while both strain and strain rate contribute substantially
for grain size. It has already been demonstrated that DRX of
Alloy D9 is essentially a strain-dominated process especially at
the lower strain rate, i.e., in hydraulic press forging operation.
The higher influence of strain rate on grain size arised due to
the temperature loss during lower strain rate, i.e., in hydraulic
press forging operation.

5. Conclusions

Artificial neural network model has been developed to
predict the microstructural evolution of Alloy D9 during DRX.
The input parameters were strain, strain rate, and temperature
whereas microstructural features namely, %DRX and average
grain size were the output parameters. Instead of standard BP
algorithm, the network has been trained with two upgraded
algorithms namely, Rprop and superSAB. Both the algorithms
predicted the microstructural features with reasonable accuracy
and reliability. However, Rprop was found to have a faster
convergence compared to superSAB in the present investiga-
tion. The performance of the model was evaluated using a wide
variety of statistical indices. A good agreement between
experimental and predicted data was obtained. The influence
of temperature and strain on microstructural features have been
simulated by employing the developed model. The results were
found to be consistent with the metallurgical trends. An
instantaneous microstructure, therefore, can be predicted from
the developed ANN model as a function of process parameters
during DRX of alloy D9.
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